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Thermodynamic perturbation theory and density-functional approximations are systematically com-
bined to produce a model of Lennard-Jones solids and solid-liquid coexistence. The perturbation theory
is based on expanding the free energy about that of the fcc hard-sphere solid, which is described by an
accurate nonperturbative density-functional theory. Approximations made throughout the development
are systematically checked against results of Monte Carlo simulations. The Gaussian approximation
used for describing the solid density is shown to be a good approximation for the stable solid; however,
anisotropies in the structure that are not captured by the Gaussian approximation become pronounced
at densities corresponding to metastable solids. The free energies of both the solid and the liquid
Lennard-Jones phases and the phase diagram predicted by the density-functional thermodynamic pertur-
bation model are in good agreement with Monte Carlo simulations for temperatures in the range

0.75=<kT /e =100.

PACS number(s): 61.20.Gy, 64.70.Dv, 64.60.Cn

I. INTRODUCTION

Developments in density-functional theory (DFT) have
made possible the unified modeling of inhomogeneous
solids and liquids [1-3]. The centerpiece of the various
DFT approximations is the free-energy functional
F[p(r)], which is generated using information about the
uniform liquid that is readily available from liquid-state
theory and atomistic simulations. Several recent
density-functional approximations make assumptions
that link the thermodynamic and structural properties of
the inhomogeneous solid or liquid system to those of the
well-characterized liquid [4-8]. Here the microscopic
density variations in the inhomogeneous system are ap-
proximated by convenient numerical or functional repre-
sentations and the total system free energy is then mini-
mized to yield the approximate optimal structure and
free energy for the inhomogeneous system.

The great flexibility of DFT is seen in the large variety
of problems that have been studied; these range from
structured simple liquids (liquids confined in narrow slit
pores [9,10], wetting and drying transitions [11,12]) to
homogeneous and inhomogeneous solids (solid-liquid
coexistence [4-8], melt-solid interface [13]). A recent re-
view of some of the applications of DFT to ordering
problems is given by Singh [3]. Models for structured
simple liquids are not very sensitive to the nature of the
approximations made for the free-energy functional [9]
and simple weighted density approximations yield results
in reasonable agreement with the predictions of atomistic
simulations [9,11]. Unfortunately, the study of solids is
more complicated, because the solid has more structure
than confined liquids, and its density varies in every spa-
tial dimension. The solid calculations are simplified by
the periodicity of the crystalline lattice, but more com-
plex free-energy functionals are required to accurately
capture the thermodynamics of the solid state [5].

Most research into density-functional theories for
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solids has focused on the description of the hard-sphere
(HS) solid, because accurate liquid-state information is
available for this system in analytical form. Recently
developed nonperturbative functionals, based on a com-
bination of thermodynamic and structural mappings of
the inhomogeneous system to the uniform liquid, have
predicted accurately the free energy of the hard-sphere
solid. For example, the nonperturbative DFT’s in [7,8]
predict the conditions of solid-liquid coexistence within
less than 1% of the results of atomistic simulations.
However, the prediction of solid structure is not so good;
for example, most DFT approximations overpredict the
degree of structured order of the hard-sphere solid at a
given density [14]. The reasons behind this inaccuracy
have not been determined.

The extension of nonperturbative DFT approximations
to more complicated potentials has encountered several
difficulties. Laird and Kroll [15] studied the soft-sphere
system and found that both the modified weighted densi-
ty [6] and the generalized effective liquid [7] approxima-
tions fail when applied directly to the solid phase. De
Kuijper et al. [16] also attempted the direct application
of DFT to the Lennard-Jones (LJ) system, but obtained
poor results at low temperatures. In a recent paper [17]
we argued that solids described by interatomic potentials
that include an attractive contribution cannot be stabi-
lized by the current DFT approximations at low tempera-
tures. We believe that an accurate combination of
density-functional approximations and thermodynamic-
pertur- bation analysis is necessary for describing such
systems; we refer to such models as DF-TP theories.

Several DF and DF-TP studies of the LJ system have
appeared in the last decade [4,13,16,18,19]. However,
most of the DF-TP formulations were not based on a
thermodynamic perturbation framework that is accurate
for high-density liquids and solids. Moreover, little at-
tention has been given to how well the structure of the
reference state is represented for the perturbation
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analysis. Simultaneously, thermodynamic perturbation
theories have appeared [20,21] for solids and high-density
liquids based on structural information provided by
atomistic simulations. These studies are very important
as tests of the accuracy of the approximations involved in
the thermodynamic perturbation analysis. Such tests are
emphasized here.

In this paper we present a model for the LJ system
based on the coupling of an accurate DFT approximation
for the hard-sphere system with an accurate thermo-
dynamic perturbation framework. The principles of the
DFT approximations are briefly reviewed in Sec. II.
Monte Carlo simulations of hard-sphere solids are used
to provide information about the accuracy of the
structural predictions of the DFT. The thermodynamic
perturbation framework is outlined in Sec. III, and its ad-
vantages with respect to more traditional approaches are
discussed. The approximations made in the DF-TP mod-
el of the solid phase are discussed in Sec. IV and predic-
tions are presented for the free energy. Calculations of
solid-liquid coexistence for the LJ system are presented in
Sec. V.

II. DESCRIPTION OF THE HARD-SPHERE SOLID

A. Free-energy functional

Evans [1] has shown that the excess free energy of an
inhomogeneous system is given by the expression

BFexz-fdrfdr'fold)»(l—l)p(r)p(r')
Xc(Z)(r,r’;[kp]) , (1)

where B=1/kT and c¢'®(r,r’") is the unknown direct
correlation function of the inhomogeneous system.

This excess free energy is approximated by a thermo-
dynamic mapping [4,5] that transforms the local excess
free energy per particle of the inhomogeneous system to
the excess free energy per particle f; of a uniform sys-
tem. There are two ways that this mapping can be con-
structed. It may be approximated Jocally using a spatial-
ly varying weighted density p(r) [4,5]

Foo= [ drp(m)fo(ain;lp]) , @

or globally using a spatially invariant weighted density
(6,7]

Fex:NfO(f)\[p]) . 3)

The necessary closure approximations for the evalua-
tion of the weighted densities p(r) or p are given by a
second approximation, the structural mapping [7], which
in the local generalized effective liquid approximation
(LGELA) [8] requires that

fdrfdr’p(r)p(r’)cm(r,r';[p])
=fdrfdr’p(r)p(r')c{,z’[Ir—-r’l;ﬁ(r)] , @

where c£,2)(|r—r’|) is the direct correlation function of
the uniform liquid, and in the generalized effective liquid
approximation (GELA) [7]

[ dr [drprp(rrePr,r';[p])
= [dr [drprp(r)c® (lr—r';5) . (5)

The total free energy of the inhomogeneous system in
the absence of an external field is

BF= [ drp(r){InA’p(r)—1} +BF,[p] , (6)

where A is the thermal wavelength. For the hard-sphere
fluid, the uniform liquid excess free energy f, is comput-
ed from the Carnahan-Starling (CS) equation of state, and
the uniform liquid direct correlation function c¢{?'(r) is
calculated from the Percus-Yevick (PY) approximation
[22]; see [1] for more details on the theoretical basis of
DFT.

B. Solid density approximation

The free-energy functional F[p(r)] defined by Eq. (6) is
valid for any inhomogeneous solid or liquid. An addi-
tional approximation for the density profile of the inho-
mogeneous system is required to reduce the search for
p(r) to a finite-dimensional problem. This approximation
introduces a set of unknown parameters with respect to
which the total free energy is minimized. Ideally, the pa-
rametrization of the density is based on numerical func-
tional approximations that are flexible and have accuracy
that can be monitored and controlled. Such approxima-
tions have been used extensively in the study of one-
dimensional problems, such as the structure of fluids
confined by solid surfaces [9]. Additional constraints also
are required that guarantee the positivity of the density;
these constraints are either explicitly introduced in the
free-energy minimization or satisfied directly through a
functional transformation of the density [9,23].

In solids the density variations are three dimensional
and extend periodically throughout the bulk. The DFT
formulation could be based on the discretization of a
three-dimensional spatially periodic supercell, the use of
a numerical functional approximation of the density and
a subsequent free-energy minimization without any
specification of the lattice symmetries. However, there
are practical and computational problems with such an
approach, that have eliminated it from consideration in
the description of solids. In the development of density
parametrizations for solids the issue of spontaneous sym-
metry breaking during the liquid-solid phase transition
has been neglected, and the crystalline structure has
been selected a priori. The first DFT studies of solids
[24,25] used a density-wave representation of the crystal-
line structure in which the solid density was approximat-
ed as

p(r)=p,;+(p;—p)pot 3 Prexplik-r), (7)
k (+0)

where {k} is the set of reciprocal lattice vectors (RLV’s)
of the crystalline lattice, and {§;} is the set of Fourier
coefficients that are used as variational parameters in the

free-energy minimization.
The density-wave parametrization (7) represents a
dramatic decrease in the number of parameters in the
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solid density approximation, and makes no direct as-
sumptions about the isotropy of the solid. However,
keeping a small number of RLV’s leads to aphysical re-
gions of negative density, as pointed out by Baus and
Colot [26]. For a structured solid close to the coexistence
density, more than 50 of these coeflicients are required
for the series (7) to converge and for the density to
remain positive throughout the unit cell. Harrowell, Ox-
toby, and Haymet [23] demonstrated that a transformed
version of Eq. (7) was well behaved, even when a small
number of RLV’s was used in their DFT. To avoid the
problems of the density-wave representation Tarazona [4]
used a Gaussian representation of the solid density in
physical space as

32
> exp[—a(r—R)?], (8)
R

= |2
p(r) [w

where {R]} are the real-space lattice vectors. This repre-
sentation of the solid density is always positive. More-
over, it introduces only one variational parameter, the in-
verse width of the Gaussian a, which is a measure of the
localization in the crystal. The application of the Gauss-
ian parametrization (8), with the GELA and LGELA
DFT approximations described previously, gives very ac-
curate predictions of the free energies of hard-sphere
solids, as is reported in Refs. [7,8].

Colot and Baus [27] tested the accuracy of the Gauss-
ian approximation by introducing non-Gaussian behavior
near the “tail” of the density peak and found that these
corrections did not shift the minimum of the free energy
from the results of the Gaussian approximation. Laird,
McCoy, and Haymet [28] compared density profiles pre-
dicted by their DFT for hard spheres for Gaussian and
density-wave representations of the solid phase, and
found that the density-wave representation resulted in
significant anisotropies in the density that were excluded
by the Gaussian representation.

Comparisons of the structural predictions of DFT ap-
proximations to atomistic simulation results have been
for the Lindemann factor of the hard-sphere system at
coexistence, and the stable crystalline lattice symmetry
and lattice parameter. The Lindemann factor L is
defined as the ratio of the mean amplitude of the thermal
vibrations in the crystal to the nearest-neighbor intera-
tomic separation [24,26]:

LE<|I'~R|2>1/2/FNN 5 (9)

where R is the position vector for the perfect crystalline
lattice, and ryy is the nearest-neighbor separation. The
Lindemann factor is linked to the localization parameter
a of the Gaussian parametrization through a quasihar-
monic crystalline representation. For the fcc crystalline
lattice studied here for the hard-sphere system L is [26]
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where a is the lattice constant. Simulations have yielded
various values for the Lindemann factor at the coex-
istence density; for liquid argon L =0.1—0.14 [24] and

for the hard-sphere system L =0.126 [29]. Little data
has been reported for the variation of L with density for a
hard-sphere system.

Two issues involving the structural representation are
particularly important for constructing accurate DFT’s.
First, how good is the Gaussian approximation for the
range of densities where it is typically used? And
specifically, are there any anisotropies in the solid density
that are excluded by the Gaussian approximation?
Second, how does the structure of the hard-sphere solid,
as measured by the localization parameter a, vary with
density? We performed a series of Monte Carlo (MC)
simulations for hard-sphere solids to answer these ques-
tions.

The simulations were based on 500 and 864 particles
arranged in a periodic cubic supercell. Particles were
moved individually according to the Metropolis algo-
rithm [30]; a Monte Carlo sweep refers to trial moves for
all particles. Starting with a perfect fcc configuration at
the coexistence density, one long simulation (250000
sweeps) was used to generate a starting configuration for
the subsequent simulations. Approximately 10° sweeps
were discarded each time to avoid any influences of the
initial positions. The typical simulation at each density
was comprised of 250 000 sweeps.

The simulations were used to measure the three-
dimensional density profile within the unit cell of the fcc
lattice. For this purpose the center of mass of the simula-
tion cell was fixed to the perfect crystal position. Each
simulation cell consisted of 5°=125 and 63=216 unit
cells for the 500 and 864 particle systems, so each sweep
through the particles corresponded to 125 and 216 unit-
cell configurations, respectively. Approximately
(2-3)X 107 unit-cell configurations were used for con-
structing averages. The unit cell was split into 40 bins in
each spatial dimension and the value of the density at the
center of each bin (x,,y,,2,) was computed as

N M
p(xb,yb,zb)=K_l E 2 5(5?, _‘xb)ﬁ(j}[—yb)
i=1j=1

X8(2;—z,), (11)
where N is the number of particles,
X;=x;—aint(x;/a) , (12)

is the mapping of particle positions to the single unit cell,
and int corresponds to the integer portion of the argu-
ment,

1, x,—Ax/2=<%;<x,+Ax/2
0, otherwise

and K=M(l/a)’AxAyAz, where M is the number of
particle sweeps in the simulation, / is the length of the
simulation cell, a 1is the lattice constant and
Ax =Ay =Az=a /40 are the dimensions of the bins.

The coefficients {fy} in the Fourier expansion of the
density are computed directly from

5(56\,-—36[,): (13)

A1 .
pkzvfdrp(r)exp(—lk‘r) . (14)
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The variation of p, =p, /p with k, where p is the average
solid density, is shown in Fig. 1 for hard-sphere solids
with 1<pd3<1.12 as predicted from the MC simula-
tions. This variation strongly resembles the Gaussian
prescription for p, =exp( —k?/4a), particularly for den-
sities satisfying pd®> 1.

The values of a that led to the best approximation to
the MC results are plotted in Fig. 2 as a function of the
solid density. These results are compared to the values of
a that minimize the solid free energy within the GELA-

L

® DFT (GELA) prediction 2
/
& MC prediction (500) 4
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O MC prediction (864) ,
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FIG. 2. Comparison of the localization ad? predicted from
MC simulations with 500 and 864 particles of the hard-sphere
solid, and the predictions of the GELA density-functional
theory for 0.96 <pd>*=<1.12.

(c) pd®=1.08
FIG. 1. Comparison of Fourier coefficients
. | px=pP/p predicted by MC simulations (A)
30 40 and best fit of the Gaussian approximation
( ) for the hard-sphere solid, at (a)
' pd*=1.0, (b) pd>=1.04, (c) pd>=1.08, and (d)

(d) pd®=1.12 pd*=1.12.
30 40

DFT formulation. It is clear that the GELA-DFT over-
predicts the structure of the HS solid throughout the den-
sity range 0.95 Spd35 1.12. At the coexistence density
of pd3=1.041 predicted by GELA, the Lindemann fac-
tor, as found from these Monte Carlo simulations and Eq.
(10), is L =~0.122; the GELA prediction is L =0.1, as re-
ported in [7]. The difference between this prediction of
the Lindemann factor and the value reported by Hoover
and Ree [29] derives from differences in the simulation
methods. Hoover and Ree used the ‘‘single occupancy
cell” method to localize the solid, whereas in this study
the center of mass of the simulation supercell was kept
fixed in order to obtain meaningful density profiles in the
unit cell. The effect of this constraint depends on the size
of the simulation cell and it can be minimized by increas-
ing the number of particles in the simulation; for
N =2916 particles, the Lindemann factor is L ~0. 125, in
better agreement with Hoover and Ree.

The computation of the three-dimensional density
profile in the unit cell from the Monte Carlo simulations
allows the study of possible anisotropies of the solid den-
sity. Contours of the z-averaged density p(x,y)=(1/
a) f p(r)dz computed from the MC simulations are
presented in Figs. 3 and 4, and are compared to the
Gaussian predictions with the corresponding values of «;
the values of the density used are pd*=0.96, which is
well within the metastable solid region, and pd>=1.1, re-
spectively. The structure of the peak centered at (0,0,0) is
seen more clearly in the plots of 4772p(r)d in the three
main crystallographic directions [100], [110], and [111],
which also are presented in Figs. 3 and 4 for the two
values of the density. Some deviations from the Gaussian
model are visible in Fig. 3, but these anisotropies become
less apparent as the density is increased. The deviations
from the Gaussian approximation for pd *=0.96 are simi-
lar to those predicted by Laird, McCoy, and Haymet [28]
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FIG. 3. Density profiles 4mr’p(r)d plotted
along the [100], [110], and [111] directions in
the unit cell for the Gaussian peak centered at
(0,0,0), for a solid with pd3=0.96; r is scaled
by the hard-sphere diameter d. The solid
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curve corresponds to the Gaussian approxima-
tion with ad?=44, and (0O) to the MC results.
Contours of the z-averaged densities in the unit
cell (0.1, 0.25, 0.5, 1.0, 2.5, 5.0, and 8.0) pre-
dicted from the MC simulations and the
Gaussian approximation also are compared.
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and discussed by Oxtoby [2], but the differences appear at
a much smaller density. The density is greater than the
Gaussian prediction along directions in the crystal where
the interatomic distances are largest. The effect of this
anisotropy becomes less important at higher solid densi-
ties and the use of the Gaussian approximations in DFT
models for the solid seems justified.

A possible explanation for the failure of most DFT ap-
proximations to predict the correct degree of localization
in the solid is that the structural mapping does not ap-
proximate correctly the strength of pair correlations in
the solid. This approximation creates a more structured
solid to counteract the ideal-gas contribution to the total

10

[pd®=1.1 ad?=139.5]

free energy, which acts as a balancing term in the minim-
ization of the free energy with respect to the localization
parameter a. For the purposes of this work, the GELA
and LGELA approximations of the hard-sphere free en-
ergy are accurate enough to warrant the use of the hard-
sphere solid as a reference state for the thermodynamic
perturbation study of solids described by the LJ intera-
tomic potential.

III. THERMODYNAMIC PERTURBATION THEORY:
THE LJ LIQUID

Thermodynamic perturbation analyses have been used
extensively in the last few decades [22,31,32] in studies of

Monte Carlo (pd®=1.1)

K\V

¥

along the [100], [110], and [111] directions in
the unit cell for the Gaussian peak centered at
(0,0,0), for a solid with pd3= 1.1; r is scaled by
the hard-sphere diameter d. The solid curve
corresponds to the Gaussian approximation

<< FIG. 4. Density profiles 47r2p(r)d plotted
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N with ad?=139.5, and (O) to the MC results.
Contours of the z-averaged densities in the unit
cell (0.1, 0.5, 1.0, 2.0, 6.0, 10.0, 15.0, and 25.0)
Iz predicted from the MC simulations and the
@ Gaussian approximation also are compared.
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the properties of homogeneous liquids described by sim-
ple interatomic potentials. The LJ system described by
the pair potential

12 6

ag
r

g
r

Uyy(r)=4e

has been studied extensively, where € and o are the ener-
gy and length scales of this interatomic potential. The
centerpiece of the thermodynamic perturbation method is
the decomposition [22] of the pairwise potential to

Up(=U, (N+(A=A)U,(r) (15)

where U Ao is the reference state potential, A is a coupling

parameter, and U, is the contribution defined so that if
A=A, Uy, is the complete interatomic potential. In

most studies the decomposition of the LJ potential has
been written with A;=0 and A, =1 [22], so that Eq. (15)
reduces to

U (r)=Uy(r)+U,(r) . (16)

Zwanzig [32] showed that it is possible to expand the
free energy of a system whose potential has been decom-
posed according to Eq. (16), as an expansion in 8 about
the reference potential U,. The free energy becomes

2
F=F0+£’2—Vfdr U,(rgo(r)+ -+, (17)

where F|, is the free energy of the reference state system,
and g(r) is the pair distribution function of the reference
state and the ellipsis signifies higher-order terms.

Because the reference state is not necessarily better
known than the full LJ system, it is important to link its
properties to the hard-sphere system:

o , forr<d

U =
hs(7) 0, forr>d,

where d is the hard-sphere diameter. The hard-sphere
liquid is well described by the CS equation of state and
PY pair distribution function [22]. The PY approxima-
tion is used in this work for consistency with the liquid
description used in the DFT instead of the more accurate
pair distribution function that was developed by Verlet
and Weiss [33]. The solid is accurately modeled by the
DFT approximations discussed in the previous section.
The mapping to an effective hard-sphere system is accom-
plished by defining

d=d[Uy(r);p,T], (18)

where d is the effective hard-sphere diameter.

The blip function Ae(r)={exp[ —BUy(r)]
—exp[ —BUyg(r)]} is used as a measure of the hardness
of the reference state [22] and is the link between the
reference state free energy F, and that of an equivalent
hard-sphere system through a functional expansion of F,
in terms of Ae(r):

2
FO=Fd——;—ﬂB~deryd(r)Ae(r)+ e (19)

where y,=g,(r)exp[BUys(r)] and the subscript d
denotes hard-sphere liquid properties. Neglecting
higher-order contributions gives Fy=F, for an effective
diameter of a hard-sphere system that satisfies

[dry (nAer=0. (20)

The mapping condition (20) was introduced by Andersen,
Weeks, and Chandler [34] and yields an effective hard-
sphere diameter that is a function of both density and
temperature.

There are three key steps in developing an accurate
thermodynamic perturbation framework: a good poten-
tial decomposition scheme must be selected; an accurate
mapping of the reference state to an effective hard-sphere
system must be developed; and the perturbative contribu-
tion to the total free energy of the system must be com-
puted efficiently. Each of these issues is considered in
turn.

A. Potential decomposition: Effective hard-sphere system

Most previous DF-TP analyses have been based on the
Barker-Henderson (BH) potential decomposition [22], ac-
cording to which

Uys(r), forr<o

U =
olr) 0, forr>0o,
(21)
_ 0, forr<o
U](r): ULJ(r) ’ forr>0 .

The corresponding prescription for the effective hard-
sphere diameter is

d=f0°°dr{1—exp[—3U0(r)]} . 22)

Equation (22) has been widely used and is relatively accu-
rate. Verlet and Weiss [33] have shown that Eq. (22) re-
sults from the leading-order term in Eq. (20), if 72y (r) is
expanded in a Taylor series about its value at r=d.
Equation (20) was used by Weeks, Chandler, and Ander-
sen (WCA) [35] with the potential split into purely repul-
sive and purely attractive parts

Uy +e, for r<2'8a
Uy(r)=
0, for r>2"% ,
(23)
—eg, for r<2'%¢
Uplr) Uyy(r), for r>2Y%o .

The WCA decomposition converges faster than the BH
decomposition, especially for the high-density liquids
that are used in the study of solid-liquid coexistence [35].
Both of these decompositions are not useful at high tem-
peratures because the reference potential becomes too
soft and the effective hard-sphere system densities be-
come unrealistically high [36].

Kang et al. [37] introduced a density-dependent poten-
tial splitting, which maintains the rapid convergence of
the WCA decomposition and reduces the effective hard-
sphere density by shrinking the range of the reference
repulsive potential to the nearest-neighbor distance of an
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fcc lattice. This decomposition is

U (r)—F(r), forr<A
Uy(r)=
0, forr>A,
(24)
_ F(r), forr<A
U(n= Uy (r), for r>A,
where the function F (r) is defined as
F(r=Up(M)— U (A)A—r),
with (25)

A=min{2!/%5,21/6 /p!/3} .

We use the definition of A given in Kim, Ree, and Ree
[38] that varies continuously between 2!/®0 and the
density-dependent cutoff. Previous calculations of the

1.2

. (a) kT/e=0.75 Lt

15 L ' l ‘ 1
0.9 1.0 1.1

FIG. 5. Range of Lennard-Jones liquid densities that can be
spanned from a hard-spheres reference state with densities
0.92<pd*<1.1 at temperatures (a) kT/e=0.75 and
kT /e=100. Comparison between BH (+) decomposition,
WCA (Q) decomposition, BH (X), and WCA ( ) approxi-
mations for the effective hard-sphere diameter for the Kang,
Ree, and Ree [21] potential decomposition. The curves
(— — —) correspond to the MC predictions for liquid-solid
coexistence densities at these temperatures.

effective hard-sphere diameter performed with the origi-
nal prescription of Kang et al. [37] do not differ
significantly [39].

The advantages of the Kang et al. [37] decomposition
for the study of high-temperature systems are apparent in
Fig. 5, where the range of LJ densities that is accessible
using a hard-sphere reference state with densities
0.92<pd*<1.1 are compared for several decomposition
schemes and prescriptions for the effective hard-sphere
system. Our goal is to accurately represent LJ solids and
liquids with densities in the vicinity of the melting and
freezing point. While at low temperatures, the BH
decomposition scheme is well behaved, it maps a LJ
liquid at the freezing density to a hard-sphere system
with an unreasonably high density at very high tempera-
tures. The same inaccuracy is inherent to the WCA
decomposition scheme. The advantage of the Kang et al.
decomposition is that at kT /e =100 the range of LJ den-
sities 2.2 <po?<3.2 can be spanned from the range of
hard-sphere liquid densities 0.92<pd><1.1 Using the
BH prescription for the effective hard-sphere diameter
for this potential decomposition scheme also yields
reasonable results for d; however, neglecting higher-order
contributions leads to larger values of the free energy
than with effective hard-sphere diameters estimated from
the WCA Eg. (20).

B. Pair distribution function

WCA used the approximation [35]

8o(r)=y,(rlexp[ —BUy(r)], (26)
which is equivalent to
go(r)=y (rlexp[ —BU(r)] (27)

for the WCA potential decomposition [33]. Equation (27)
does not require y,(r) for r <d. However, Egs. (26) and
(27) are not equivalent for the potential decomposition of
Eq. (24) at densities po>>1. Calculations using both
prescriptions for the reference state structure are present-
ed here to study the effect of these approximations on the
predicted values for the free energy. The Percus-Yevick
approximation y,(r)=g,(r)—c,4(r) is used for the hard-
sphere system [40]. The technique described by Frisch
et al. [41] is employed to compute the long-range pertur-
bative contributions to the free energy after making the
appropriate adjustments for the Kang et al. potential
decomposition scheme.

The predictions of this framework for the excess free
energies of uniform LJ liquids are shown in Table I for a
range of temperatures, and are compared with the exact
values from MC simulations, and the predictions of Kang
et al. [37]. Our approximations are accurate over the en-
tire temperature range 0.75 <k7T /e <100. These results
confirm the accuracy of the TP framework for the
description of uniform LJ liquids. Using Eq. (27) im-
proves the predictions at higher densities. This was also
observed by Kang et al. [37]. Equations (26) and (27) are
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TABLE 1. Excess Helmholtz free energy BF., /N for the uni-
form Lennard-Jones liquid. Comparison between MC calcula-
tions [37,49], the predictions of Kang et al. [37], and this work
using Egs. (26) and (27) for the reference state g(r). The
effective hard-spheres packing fraction 1 predicted by [37] and
this work also are compared.

BF /N n
Ref. PY Ref.
pa? Exact [37] Eq. (26) Eq. (27) [37] PY
kT /e=0.75
0.7 —4.17 —4.15 —4.15 —4.15 0.393 0.394
0.8 —4.47 —4.46 —4.46 —446 0448 0.450
0.84 —4.53 —4.52 —4.52 —4.52 0.470 0.472
kT /e=2.74
1.0 1.58 1.57 1.65 1.65 0.474 0.479
2.31 2.30 2.43 240 0.505 0.510
kT /e¢=5.0
1.0 2.20 2.13 2.19 2.20 0.435 0439
1.279 4.26 4.19 4.37 4.29 0.512 0.518
kT /£¢=100.0
1.33 2.13 2.15 2.16 2.16 0.326 0.328
1.4 2.31 2.32 2.35 2.35 0.340 0.342
2.0 4.36 4.37 4.49 444 0441 0.446
2.222 5.38 5.40 5.56 5.48 0.472 0477
2.38 6.22 6.24 6.45 6.34  0.491 0.496
2.5 6.92 6.95 7.19 7.06 0.505 0.510

both accurate to the same order [37], but the use of Eq.
(26) requires additional approximations that reduce its
accuracy.

IV. DESCRIPTION OF THE SOLID PHASE
A. Solid pair distribution function
Our objective is to build a DF-TP model for the LJ
solid. The main requirement for the model is that it
|

(r;p)

(r)—
& 4arV 2

exp[ —al

fdrp(r)z\

At this point, a direct minimization of the LJ solid free
energy may be performed. However, the attractive con-
tribution to the free energy leads to superstable solid
phases, and shifts the minimum in a to more structured
solids than the ones found by assuming that all structural
information comes directly from the hard-sphere free-
energy minimization [46]. Using the mean-field approxi-
mation p=0 yields more reasonable values for the free
energy than the value of § from the GELA approxima-
tion. However, the mean-field model is not accurate for
the uniform liquid system.

Why does the structural model of Eq. (28) fail? The
solid phase g (r) predicted from Eq. (30) with both the
GELA and the mean-field approximations for " are com-

r—|r'—R|)?]—exp[—

reduces to the Kang et al. [37] framework for the uni-
form liquid, described in Sec. III, when taken to this lim-
it. The free energy of the reference state for the hard-
sphere system is given by the GELA-DFT approxima-
tion. An issue of particular interest is the model for the
solid-state pair distribution function g,(#). Analytical ap-
proximations for this function have been developed by
Choi, Ree, and Ree [42], Weiss [20], and Kincaid and
Weiss [43], but these expressions cannot be used in a
DFT, where the objective is to generate and not use
structural and thermodynamic information for the solid.

Most of the DF-TP methods developed in the past
have been for inhomogeneous liquids. A variety of mod-
els have been used, ranging from a local-density approxi-
mation for g,(r) in an analysis of the gas-liquid interface
[44], to the mean-field treatment of the inhomogeneous
liquid confined in narrow slits [9]. Recently Tang,
Scriven, and Davis [10] and Sokolowski and Fischer [45]
developed a DF-TP model for inhomogeneous liquids
that incorporated the effects of correlations in the liquid
phase. The natural extension of this approximation to
the study of uniform solids is defined by the mapping

gr,r’;[p=g(lr—r'[;p) , (28)

where p is the weighted density of the GELA approxima-
tion for the solid. The mean-field (MF) approximation
corresponds to the limit /=0 and was used by Tarazona
(4].

The spherically averaged pair distribution function of
the solid is written as

g (r= fdQ dr'p(r')p(r+r1')g(r;p) ; (29)

47TV 2

or using a manipulation proposed by Tarazona, it can be
computed more efficiently as

alr+|r' =R} . (30)

pared in Fig. 6 to the pair distribution function given by
Monte Carlo simulations at the same density. The func-
tions gpmc(r)/gme(r) and gppp(r;p)/gme(r) are com-
pared in Fig. 7, for the localization a at the density pre-
dicted by the GELA. Although the DF model captures
the contact value (a measure of the pressure) rather accu-
rately, it is clear from Fig. 7 that there are correlations in
the solid phase that neither a mean-field model nor the
DFT approximation of Eq. (28) can capture. The PY
liquid pair distribution function at pd®=1.04 also is
shown in F1g 6. For pd®<1.08 Woodcock [47] found
that there is a metastable hard-sphere liquid that under-
goes a transition to a glass upon compression for
pd 3>1.08. The PY expression for g(r) loses accuracy at
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, . r : - -
(pd®=1.04 ad®*=121)

- BF,../N=-9.33 (MF) 1
—10.07 (PY liquid) ,
—14.69 (DFT)

—10.10 (MC)

1.0 1.5 2.0

FIG. 6. Comparison of models for the hard-sphere solid pair
distribution function at pd®=1.04: MC results (00), GELA-
DFT model (- - - .), mean-field model (— — —). The solid
curve corresponds to the PY liquid g(r) at that density. The in-
sert is a plot of the integrand in Eq. (17). For details see text.

those high densities, but still retains the characteristics of
the MC simulations g(r) for the metastable liquid.

The inset plot in Fig. 6 shows the variation of the in-
tegrand of Eq. (17) computed using Eq. (27),
47r’BU 1(r)g,(r;d), and plotted for the three alternative
solid pair distributions at k7 /€=0.75. The liquid g(r)
predicts perturbative contributions that are intermediate
between those of the GELA and the mean-field solid pair
distribution functions. The reason is that the liquid g ()
lies close to the exact g (r) within the first nearest-
neighbor shell, this portion of the curve gives the most

3 —_—
3
pd®=1.04
MC g,(r)
O ---- DFT g,(r)
29
>
a0 ]
~
= >
o ! < . —
O " N L 1 1 " " I 1
1.0 15 2.0

FIG. 7. Plot of gmc(r)/gme(r) ( ) and gppr(r)/gme(r)
(— — —) for the hard spheres solid at pd>=1.04, and with
ad?=121.

important contributions to the free energy because the
minimum of the LJ potential occurs here. Therefore, the
approximation of ignoring the solid structure and using
the g (r) of an isotropic liquid as used by Jones and Ash-
croft [48] and Curtin [13], seems reasonable and is used
in our calculations for the solid.

One problem with this approximation is that the per-
turbative contribution is a function, rather than a func-
tional of the density, and cannot distinguish between
different crystalline structures. Therefore, the relative
stability of the bcc and the fcc lattices in the LJ system
cannot be explored within this approximation because
any free-energy differences that arise in this model are
due to the hard-sphere contributions.

B. Solid free energies

The predictions of the DF-TP model described above
for the excess free energies of LJ solids with respect to an
ideal gas at the same temperature and density are com-
pared in Fig. 8 to the predictions of MC simulations re-
ported for 0.75=<kT /e <100. These predictions are
compared in Table II with the results of Kang, Ree, and
Ree [21], who used an analytical approximation for the
hard-sphere solid pair distribution function. The packing
fraction n=m/6pd> of the effective hard-sphere liquids
that correspond to the solid also are compared in Table II
with the values reported by [21]. The effective hard-
sphere systems resulting from the use of liquid pair distri-
bution functions are consistently less dense than those of
[21]. DF-TP results with 5> 0.575 correspond to hard-
sphere liquids beyond the glass transition [47] and are not
very reliable.

The free-energy predictions of this approximation are

TABLE II. Excess Helmholtz free energy BF.,/N for the
Lennard-Jones solid. Comparison between MC calculations
[49], the predictions of Kang, Ree, and Ree [21], and this work
using Egs. (26) and (27) for the reference state g(r). The
effective hard-sphere packing fraction n predicted by [21] and
this work also are compared. The asterisks indicate packing
fractions that exceed the supercooled liquid limit.

BF /N Ui
Ref. PY Ref.
pa? Exact [21] Eq. (26) Eq. 27) [21] PY
kT /£=0.75
1.0 —4.48 —4.48 —4.52 —4.51 0.567 0.558
1.025 —4.41 —4.44 —4.48 —4.47 0.575 0.567
1.1 —4.17 —4.10 —4.02 —4.12 0.596 0.588*
kT /e=1.35
. 0.18 0.21 0.24 0.18 0.562 0.554
1.2 0.92 1.08 1.23 1.06 0.587 0.579*
kT /e=2.74
1.2 3.138 3.193 3.25 3.17 0.544 0.537
1.3 4.074 4.135 4.27 4.12 0.568 0.560
1.4 5.31 5.37 5.59 5.36 0.589 0.580*
kT /£=100.0
3.0 10.32 10.59 10.32  0.568 0.559
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(b) KT/e=2.74

1.4 1.6 1.8 (

FIG. 8. Comparison of model predictions
) of the excess free energy of LJ solids
with respect to an ideal gas at the same po?

(d) KT/e=100 and

T, with MC simulation results from
[21,49] (@) at (a) kT /e=0.75, (b) kT /e=2.74,
(c) kT /e=5, and (d) kT /e=100.
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reasonably accurate for all temperatures. The solid ex-
cess free energies predicted using Eq. (27) for the refer-
ence state are closer to the simulation values. Since the
hard-sphere solid free energies predicted by GELA also
are very accurate, this agreement is not fortuitous, but
rather is a result of the TP framework used to approxi-

~F

TABLE III. Fluid-solid coexistence densities and pressures
for the Lennard-Jones system for a range of temperatures k7T /¢.
Comparison between MC simulations [49,21], the predictions of
Kang, Ree, and Ree [21], this work using Egs. (26) and (27),
Curtin and Ashcroft [18], and Curtin [13].

Ref. PY Ref. Ref.
mate the free energy. Exact [21] Eq. (26) Eq. 27) [18] [13]
V. LIQUID-SOLID PHASE TRANSITION kT /e=0.75
pPsO 0.973 0.958 0.983 0.987 0970 1.025
Another test of the accuracy of the DF-TP model is pio’ 0.875 0.866  0.859  0.861 0.855 0.898
the prediction of the conditions of coexistence of the LJ Po’/e 0.67 0.66 0.65 0.68 09 241
solid and liquid. Thermodynamic coexistence occurs
when at a given temperature the two phases have equal kT/ 532 1.15
chemical potentials and pressures: pso3 1.024 1.030 1.008 1.016 1.026 1.059
pio 0.936 0.954 0.920 0.919 0.934 0.946
Po3/e 5.68 6.41 5.44 539 64 7.62
—40 ‘ , [ , : kT /e=1.35
| 1 pso’ 1.053 1.058 1.024 1.033 1.045 1.085
pi0? 0.964 0.986 0.943 0.939 0.960 0.970
| 1 Pod/e 9.00 9.60 8.13 7.95 9.1 10.8
45T ] kT /e=2.74
| ps0° 1.179 1210  1.156  1.159
. ] pio? 1113 1144 1093  1.092
n\ F 1 Po3/e 32.2 36.8 31.58 30.00
b —950 N
[ r kT /e=5.0
s ] pso? 1349 1372 1309 1310
1 pio° 1279 1304 1247 1244
55 L . Pol/e 86 93 80.45  76.8
- kT /e=10.0
: pso? 1.572 1599  1.523  1.524
60 L ‘ L , ] pi0° 1500 1526 1457  1.454
0a® kT /£=100.0
pso? 2706 2750  2.614  2.613
L. P . pio° 2.601 2.639 2.517 2.511
FIG. 9. Prediction of solid-liquid coexistence by double Pol/e 4800 5036 4393 4214

tangent construction at k7" /¢ =0.75.
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10 ————————r———1———— O

e MC predictions 1

kT/e

0.0 0.5 1.0 1.5 2.0

FIG. 10. Phase diagram predicted for LJ potential. The solid
curves are predicted by the DF-TP analysis and the symbols
correspond to MC calculations taken from [21,49].

ks(ps)=pi(pr) 5 ps(ps)=pi(p;) . @31

The chemical potentials and pressures of both phases
are easily determined from the variation of the total free
energy with the density at a given temperature. The solu-
tion of Egs. (31) corresponds to a double tangent con-
struction, as shown in Fig. 9, for kT /¢ =0.75. The con-
ditions of solid-liquid coexistence are presented in Table
IIT as predicted from the DF-TP approximations to the
free energies for the solid and the liquid. The data are
compared to the MC results, the predictions of Kang,
Ree, and Ree [21] and the DF-TP models of Curtin and
Ashcroft [18] and Curtin [13]. The predictions of the
DF-TP model described here are within 5% of the values
from simulations throughout the temperature range.
Curtin and Ashcroft’s predictions [18] are better in the
low-temperature range 0.75=<kT/e=<1.35. However,
our calculations for the free energies of both the solid and
the liquid phases are more accurate, in spite of the
structural corrections that are included for the solid
phase in [18]. The predictions of Curtin [13], which
share the same approximations for the solid phase, but
use a much simpler TP scheme, are not as accurate.

The phase diagram of the LJ system for
0.75=<kT/e=<10 is shown in Fig. 10 as predicted from
the DF-TP model. The discrepancy in the liquid-gas
phase diagram is a known feature of the WCA potential
decomposition scheme [33]. The agreement between our
DF-TP model and the MC simulations is very good.

VI. SUMMARY

We have developed a DF-TP framework for LJ solids.
The model is based on combining a nonperturbative DFT
for hard-sphere systems, a Gaussian representation of the

density of the solid and a thermodynamic-perturbation
theory for the LJ free energies based on a reference state
of a fcc hard-sphere system. Each of these approxima-
tions is tested individually by comparison to Monte Carlo
simulations that exactly model the hard-sphere and LJ
systems.

The predictions of solid-state structure of the nonper-
turbative DFT approximations for hard spheres were
compared to density profiles of hard-sphere solids ob-
tained from MC simulations. The simple model of the
solid structure given by the Gaussian representation of its
density is a good approximation for solids that are ther-
modynamically stable. The anisotropies in the density
predicted by the DFT studies [28] are important only in
very metastable solids and justify the application of the
Gaussian approximation to the density. Monte Carlo
simulations confirm that the predictions of the DFT
overestimate the localization in the solid and provide ad-
ditional information for the variation of the structure
with density that can be used for comparison in future
DFT models, where the accuracy of the structural map-
ping has to be reassessed.

The ability of the density parametrization to approxi-
mate the features of the inhomogeneous system is very
important. Since the study of solids makes the use of
flexible numerical approximations prohibitively expen-
sive, direct comparisons with three-dimensional density
profiles obtained by MC simulations is the best approach
for developing more robust and realistic representations
of inhomogeneous solid regions, such as the solid-melt in-
terface, where information provided by DFT is particu-
larly valuable.

Examination of the approximations to the spherically
averaged pair distribution functions for the solid phase
used in DF-TP theory revealed that the DFT and mean-
field descriptions are inadequate, because both either
overpredict or underpredict the attractive contributions
to the free energy. Application of the pair distribution
function of the supercooled liquid gave results with accu-
racy comparable to the free energies predicted using MC
simulations to compute g(r) for the reference hard-sphere
solid. The most encouraging result from this effort is that
the entire phase diagram of the LJ system is predicted ac-
curately using only liquid-state information for a large
range of temperatures.

It will be interesting to adapt the DF-TP framework
with the density-dependent potential decomposition
presented here to an inhomogeneous solid region, such as
the melt-solid interface, where there are bulk density
variations; and to explore its applicability to metallic sys-
tems, where density-dependent effective pair potentials
are typically used [13].
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